
Spatial reflection and associated string order in quantum spin chains

Li-Xiang Cen
Department of Physics, Sichuan University, Chengdu 610065, China

�Received 1 July 2009; published 20 October 2009�

We investigate spatial reflection and associated nonlocal order in spin-chain quantum systems. The proposed
string order parameters, e.g., reflected via operations of the spatial reflection or combinations of it with spin
reflection, are able to characterize a variety of physical systems and allow us to gain insights to the statistical
mechanism underlying phenomena such as the Haldane gap and quantum phase transitions. Besides revealing
further the potential application of the generalized parity symmetry in numerical algorithm, we build an
explicit scheme to determine the symmetry and the related string order for matrix-product states so that one can
construct ansatz models with presumed properties.
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Order parameter has been one of the most important con-
cepts in condensed-matter physics since Landau’s finding of
it in describing continuous phase transitions with spontane-
ous symmetry breaking. The nonlocal string order, originally
introduced by den Nijs and Rommelse,1 was thought of a
hidden antiferromagnetic Néel order and exploited to under-
stand the mechanism of the Haldane gap.2 Despite that
Haldane ground states of integer-S Heisenberg chains pos-
sess only short-range spin-spin correlations, they could have
nonzero string order parameters. The latter was found to be a
common feature of the Haldane phase resulted from breaking
of certain topological symmetry3 and the phenomenon has
been investigated for various physical models.4 A typical ex-
ample is the valence-bond solid �VBS� model5 and its
higher-S generalizations,6,7 in which the string order param-
eter can be explicitly worked out.

To determine the hidden order for a general quantum
many-body system is a problem highly nontrivial. In a recent
literature,8 the presence of den Nijs-Rommelse string order is
demonstrated rigorously in relation to the existence of local
symmetries within the framework of matrix-product states
�MPSs�. The revealed connection is somewhat universal in
the sense that the MPS formulation indeed offers a general
mathematical representation for quantum many-body
states.9–11 As a consequence, the problem of determining the
den Nijs-Rommelse string order for a quantum system is
recast as that of finding out possible local symmetries in the
system. At this stage, it is of interest to build a scheme to
identify the local symmetry for general MPSs since for every
MPS with a finite representative dimension an ansatz model
with local interactions can always be constructed9 such that
the given MPS constitutes its ground state.

In this Brief Report we investigate the spatial reflection
and propose string order to characterize spin-lattice systems.
Differing from conventional string operators utilizing local
unitary transformations, the present string operator acting on
spins in between two boundaries is defined by the spatial
reflection or combinations of it with local spin reflection. By
virtue of the MPS representation, the proposed string order is
shown to relate intimately to the symmetry with respect to
parity or generalized parity transformations. The quantity is
then applied to characterize a sort of models including the
VBS states and a spin-1

2 system with quantum phase transi-

tions. Similar to the parity symmetry, the generalized parity
symmetry could also be applied to reduce computational
costs in numerical algorithm of the density-matrix renormal-
ization group �DMRG�.12,13 In addition, we build an explicit
protocol to determine from first principles the string order for
MPSs with representative dimension D=2 and present an
example of modeling ansatz with presumed properties.

The primitive form of the string order parameter em-
ployed here is proposed as

SOP
� � lim

�j−i�→�
�Si

�P�l�Sj
�� , �1�

where Si
� ��=x ,y ,z� denotes the spin operator of the ith

lattice site and the parity operator acts on l= j− i−1 consecu-
tive sites between the boundary spins i and j as
P�l��si+1¯si+l�= �si+l¯si+1�. This string operator and its gen-
eralized form of Eq. �10� can be exploited to characterize the
hidden order for infinite lattice systems just as the original
den Nijs-Rommelse string order.

To be specific, let us resort to the MPS formulation for
translationally invariant spin chains

��� =
1

�TrEN�
	si


Tr�As1
¯ AsN��s1, . . . ,sN� , �2�

where si=1, . . . ,d specifies the lattice spin degrees of free-
dom and 	As
 is a set of D�D matrices parameterizing the
state ���. The transfer matrix E contained in the normaliza-
tion factor is given as E=�s=1

d �As�� � As. By using further the
notations, say, ES� ��s,s��s�S��s���As�� � As�, the quantity
SOP of the state ��� is shown to be

SOP
� = lim

l→�
lim
N→�

Tr�ESi
�EP�l�ESj

�EN−l−2�

TrEN , �3�

where

EP�l� = ��ET2�l�T2, ET2 = �
s

�As��
� �As�T. �4�

Note that the state ��� is identified to be parity
symmetric14,15 if and only if �iff� there is ���P�N����
=Tr�ET2�N /TrEN= �1. The latter means that for an infinite
spin chain the largest eigenvalue �m� of ET2 should have the
same modulus with the �m of E. This fact together with the
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relation liml→� EP�l� =�m�
l���m

R���m
L ��T2 lead to that the quan-

tity SOP
� could be nonzero iff the state ��� is parity symmet-

ric and the corresponding value is calculated as

SOP
� =

1

�m
2 ��m

L �ESi
����m

R���m
L ��T2ESj

���m
R� , �5�

where ��m
L�R�� and ��m

L�R�� denote, respectively, the left �right�
eigenvectors of E and ET2 related to �m.

Let us address a concrete example of the VBS ground
state of the Affleck-Kennedy-Lieb-Tasaki model5 represented
by 	As
= 		z ,�2	+ ,�2	−
. In this case, E and ET2 are Her-
mitian thus their dual bases of left and right eigenvectors
recover simply the conventional orthonormal bases. Their
largest eigenvalue �m=3 and the corresponding eigenvectors
are ��m�= 1

�2
��00�+ �11�� and ��m�= 1

�2
��01�− �10��. The string

order SOP is worked out to be �SOP
��= 1

18, which is indepen-
dent of the orientation �=x ,y or z owing to the SU�2� sym-
metry of the model. Moreover, the extended model of the
SO�5� matrix-product state7,16 specified by

A0 = 	z � 	z, A�1 = �2	z � 	�, A�2 = �2	� � I

�6�

has also nonzero SOP. The corresponding matrices E and ET2

are Hermitian again and have the largest eigenvalues �m=5
with eigenvectors as

��m� =
1

2�
i=1

4

�ii�, ��m� =
1

2
��14� − �41� + �32� − �23�� .

�7�

In terms of the Sz quantum number of the s=2 lattice spins,
the string order is obtained as SOP

z =− 1
5 .

For further application let us consider a spin-1
2 matrix-

product system specified by A0= � 0 0
1 1 �, A1= � 1 g

0 0 �. This is an
ansatz model17 described by a parent Hamiltonian with three-
body interactions and it undergoes a quantum phase transi-
tion at the point g=0. The system is parity symmetric and the
matrices E and ET2 have the same eigenvalues ��=1�g. By
definition, the string order parameter SOP

z of the ground MPS
is shown to take a discrete form with SOP

z = 1
8 as g
0 and

SOP
z = 1

8 � 1−g
1+g �2 as g�0. On the other hand, the system pos-

sesses also a local Z2 symmetry with respect to the spin flip
�0�↔ �1�. The transverse den Nijs-Rommelse string order as-
sociated with the local unitary U=exp�i�Sx�, namely,

SOD
x � lim

�j−i�→�
�Si

xU� lSj
x�, l = j − i − 1, �8�

is obtained as �SOD
x �=g / �1+g�2 or SOD

x =0 for cases g�0
and g
0, respectively. Thus the quantum phase transition of
the system crossing the point g=0 is marked distinctly by the
nonanalytical behavior of both these string order parameters.

As the quantity SOP reveals the hidden order for states
with parity symmetry, we show below that the state with
generalized symmetry with respect to combination of the
parity and spin reflection indicates another type of nonlocal
order. For a simple example consider an MPS �Ref. 15� rep-
resented by 	As
= 	� 1 0

0 �2 � , � 0 0
�2 0 � , � 0 1

0 0 �
. The state is parity ab-

sent but invariant under the combined operation P�N�UP
�N,

where UP is a spin-flip operator specified as UP= �1��1�
+ �2��3�+ �3��2�. This sort of generalized parity symmetry is
identified for MPSs as there is

�Ai�T = �
j=1

d

UP
ij�XAjX−1�, i = 1, . . . ,d �9�

and it is readily verified that for the above example there
exists X= �

�2 0
0 1 �. Indeed, the kind of symmetry was already

known in fermion systems in performance of the DMRG
procedure.13 Owing to the fermion anticommutation rule, the
Jordan-Wigner transformation will result in a parity asym-
metric Hamiltonian which is, however, invariant under the
combination of the parity and a simple spin reflection.

Accordingly, one is led to consider a string operator

SOGP
� � lim

�j−i�→�
�Si

�P�l�UP
� lSj

�� , �10�

where P�l�UP
� l describes the combined transformation on l

= j− i−1 consecutive lattice sites in between i and j. For an
MPS with generalized parity symmetry specified by Eq. �9�,
this string quantity is shown to be

SOGP
� =

��m
L �ESi

�V−1���m
R���m

L ��T2VESj
���m

R�

�m
2 , �11�

where V� I � X, ��m
L,R� are eigenvectors of E related to �m,

and the relation liml→��El�T2 =�m
l ���m

R���m
L ��T2 has been ap-

plied to obtain the equality. The string order of the MPS
mentioned above Eq. �9� is then derived as SOGP

z = 7
81 and

SOGP
x =−SOGP

y = 4
81.

Revelation of the existence of the generalized parity sym-
metry in spin-lattice systems is important in many aspects.
For instance, it can be exploited to reduce computational
costs in numerical algorithm. In fact, it has long been real-
ized in the DMRG algorithm12 that for systems with parity
symmetry the density matrix of environment blocks could be
achieved via a simple reflection on that of the system blocks.
The various existence of generalized parity symmetries can
also be utilized to achieve a factor 2 speedup and the den-
sity matrices of system and environment blocks are now con-
nected via the generalized parity transformation. Moreover,
in view that an MPS can be viewed as a ground state of an
ansatz system with short-range interactions, it is of interest to
construct the parent Hamiltonian of the modeling system
with certain presumed parity symmetry. The latter implies
that the derived system might possess nonlocal order associ-
ated with the specified string operator.

We now focus on the problem of determining the gener-
alized parity symmetry for MPSs so as to construct ansatz
lattice models with prescribed properties. The question arises
as: given an MPS ���, how to certify the relation �9� exists
or not and how to find out such UP and X if they do exist? To
this end, we employ an expression equivalent with Eq. �9�
but in terms of the transfer matrix

BRIEF REPORTS PHYSICAL REVIEW B 80, 132405 �2009�

132405-2



ET = �X�
� X�E�X�

� X�−1. �12�

In comparison with Eq. �9�, this equation focuses solely on
the invertible matrix X and the task reduces to distinguish a
particular S, among all those satisfying ET=SES−1, that could
be decomposed into S=X� � X. The difficulty of the problem
comes from that the similar transformation S connecting ET

E is not unique and the complexity even increases with
representative dimensions. Intriguingly, we show below that
for cases of D=2 the problem could be resolved by virtue of
a particular realization of group homomorphism between the
direct product group of unimodular linear transformations
and the four-dimensional complex orthogonal group.18

Briefly, it was shown in Ref. 18 that in terms of a sort of
so-called pseudo-orthonormal bases, the representative ma-
trix of the operator X1 � X2, where X1,2 denote arbitrary lin-
ear transformation of SL�2,C�, is complex orthogonal and
constitutes a group element of SO�4,C�. The result leads to
an intuitive perception that the pseudo-orthonormal bases
could be utilized to resolve the factorization problem for the
mentioned similar transformation S. To be specific, the fol-
lowing simplest pseudo-orthonormal bases �the so-called
“magic bases,” see Ref. 19� will be employed

�e1� =
�2i

2
��00� + �11��, �e2� =

�2

2
��00� − �11�� ,

�e3� =
�2

2
��01� + �10��, �e4� =

�2i

2
��01� − �10�� . �13�

Suppose that the transfer matrix has full rank and is ex-
pressed as E=�i=1

4 �i��i
R���i

L� according to its spectrum
structure. Its transposition is then formed as ET

=�i=1
4 �i��i

L����i
R�� and the series of similar transformations

connecting them are given by S�ki�=�i=1
4 ki��i

L����i
L�, where

the parameters ki�0 are to be determined later. The distin-
guishing problem of Eq. �12� could be resolved according to
the following protocol: �i� express the operator S�ki� in terms
of bases, Eq. �13�, and denote the representative matrix as
D�

s �ki�= �e�S�ki��e��; �ii� presume that Ds�Ds�T= �Ds�TDs= I
and resolve the set of ki if they do exist; �iii� factorize the
operator as S�ki�=X1 � X2 according to the correspondence
of the group homomorphism SO�4,C�SL�2,C�
� SL�2,C� and verify if there exists X2=X1

�. Once X is fig-
ured out, the spin reflection UP can be worked out easily
from Eq. �9�.

It is worthy to note that a slightly modified scheme is
capable to determine the local symmetry hence the string
order SOD for MPSs, wherein the condition reads as8 Ai

=� jU
ij�XAjX−1�. The problem then becomes to find out a

decomposable transformation S=X� � X from all those satis-
fying E=SES−1. The S here is expressed as S�ki�
=�iki��i

R���i
L� by invoking the spectrum structure of E. The

distinguishing problem can be resolved following the same
protocol described above.

Below we present an example to illustrate the scheme and
construct the interaction model with presumed symmetry.
Consider a family of MPSs ���g�� with

A0 = �1 0

0 g
�, A+ = �0 0

g 0
�, A− = �0 1

1 0
� , �14�

where g is a real parameter. The corresponding E has the
largest eigenvalue �1= 1

2 ��+�4+�2� with �=1+g2. By
comparing the spectrum of E and ET2, one finds that the state
is parity absent except cases of g=0, �1. To reveal the pos-
sible symmetry and hidden string order, it is instructive to
specify the four left eigenvectors of E as

��1,2
L � = �1,2�00� + �11�, ��3,4

L � = �01� � �10� , �15�

where �1,2= 1
2 �1−g2��4+�2�. In terms of bases, Eq. �13�,

the transformation S�ki�=�i=1
4 ki�Li��Li� is expressed as

Ds�ki�= �
B1 0
0 B2

�, in which B2= �
2k3 0
0 2k4

� and

B1 =
1

2�
i=1

2 �ki�1 + �i�2 iki�1 − �i
2�

iki��i
2 − 1� ki�1 − �i�2 � . �16�

By substituting it into the condition Ds�ki��Ds�ki��T= I, one
derives

k1 =
�− �1�2

�1
2 − �1�2

, k2 =
�− �1�2

�2
2 − �1�2

, k3 = k4 =
1

2
. �17�

Thus one can infer that the specified operator S�ki� falls into
SL�2,C� � SL�2,C� according to the described group Homo-
morphism. Simply, the decomposition S�ki�=X1 � X2 of this
case can be obtained by expressing S�ki� in the conventional
bases 	�00� , �01� , �10� , �11�
 as it has a diagonal form S�ki�
=diag	�1/2 ,1 ,1 ,�−1/2
. The yielded X1,2 and UP satisfying
Eq. �9� turn out to be

X1,2 = diag	�1/4,�−1/4
, UP�g� = �0��0� − iei�/2n·	, �18�

where the Pauli operator 	 is defined in a two-state space
	�+� , �−�
 and the reflection is taken in the Bloch space along
n= �cos � ,0 ,−sin �� with �=arctan1

g . As a consequence, the
string order parameters SOGP

� of ���g�� are figured out in
Fig. 1.

The parent Hamiltonian with k-local interactions always
exists for a given MPS as k�2 logd D.9 It can be constructed
by a sum of positive operators supported in the null space of
a Hermitian matrix AA†, where A is a dk�D2 matrix with
A��

i1¯ik ��Ai1
¯Aik���. For the state ���g�� specified by Eq.

�14� one gets a Hamiltonian with k=2, i.e., H=�ih�i , i+1�.
As g=1, the detailed form of h is expressed as

h = �
=x,y

�	Si
Si+1

 ,Si
zSi+1

z 
+ + Si
Si+1

 �Si
z + Si+1

z ��

−
1

2
Si

zSi+1
z −

1

2
�AiBi+1 + BiAi+1� +

1

2
K , �19�

where A= �Sx�2− �Sy�2, B= �Sz�2−Sz, and K= �Si
zSi+1

z �2

+ �Si
+Si+1

− �2+ �Si
−Si+1

+ �2. The state ���1�� turns to be a unique
ground state of the model by construction9,17 and it has dual
symmetries under the parity and local spin reflection UP�1�
�cf. Eq. �18��. Consequently, the system at this point has
nonvanishing string order via both passages of the parity and
the local unitary, e.g., they are obtained as SOP

x = 3
8 and

SOD
x =

�2
8 , respectively.
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Summing up, the symmetry related to spatial reflection
has been investigated for quantum spin chains and a set of
string order was proposed. The quantity is shown applicable
to characterize a variety of physical systems owing to the
particular role of spatial reflection in spin-lattice systems.
Furthermore, revelation of the generalized parity symmetry
is important in many aspects. Besides that it can be exploited
to reduce computational costs in numerical algorithm, we
build an explicit scheme to determine it for

MPSs so that one can construct ansatz models with presumed
properties. In addition, the string correlation was shown re-
lated to the concept of localizable entanglement,20 a quantity
reflecting the quality of a quantum channel. It would be of
interest to explore further the role of the string order variants
in the context of quantum information theory.
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FIG. 1. �Color online� The
transverse string order parameters
SOGP

x �solid line in the left�, SOGP
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�dashed line in the left� and the
longitudinal SOGP

z �right� in the
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It is shown that there is SOGP

x �
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y �g�.
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